当前位置:首页  >  政策法规  >  新电价政策料加速核电投资 三年后收入望年增百亿
政策法规

新电价政策料加速核电投资 三年后收入望年增百亿

2013/7/8 8:47:08   关键字:   来源:中国石油石化工程信息网
300℃高压反应釜中采用非蒸发式水热处理煤,使煤中水分以液态水析出,能耗低,且煤中挥发分含量明显降低。

  元素分析表明,处理后的煤与原煤相比,碳元素含量增大,氧元素含量有所减少,可知水热处理对原煤具有脱氧提质效果。处理后的煤样经热解得到的煤焦油,产率较原煤热解的提高了14%左右。

  同时,研究人员直接将新采褐煤湿磨制成水煤浆,用水煤浆替代油煤浆,用一氧化碳或合成气取代纯氢气。高活性新氢生成提高了加氢反应速率,获得较高的液体产品收率,降低了液化成本,取得了褐煤直接加氢液化技术的新突破。

  该优化集成的褐煤水介质合成气加氢液化新技术,实现了低氢耗、低能耗、低成本和高产油率。

  煤气化联产新系统适度气化实现气固兼用

  大连理工大学教授张岩提出了一种可联产活性炭的适度煤气化新思路,可应用于IGCC系统或以生产合成气为目的的煤气化系统,联产活性炭可用于电厂及城镇给水净化、各种废水深度处理以及燃煤电厂烟气脱汞等。

  传统的煤气化联产技术基于煤的完全气化,利用煤气产品,实现热电联产液体燃料和化学品合成等。总结目前已经商业化的几种大规模煤气化炉特性,可以发现其共同特点是都以煤的完全气化为目标,追求碳转化率的最大化(可达99%甚至更高)。然而,张岩认为,碳转化率的最大化未必就意味着能够实现能源效率的最优化,过度追求高碳化率可能导致高能耗和低回报。

  张岩以日本刚刚开发的CCP两段式空气气化技术举例:其冷煤气效率随着碳转化率的增加而降低,达到一定程度时就导致发电效率降低。虽然该技术碳转化率高达99.9%,但其冷煤气效率只有70%-75%。他介绍说,气化反应后期,当气化温度一定的时候,单纯延长反应时间对提高碳转化率是没有帮助的,只能通过增加氧煤比或者提高反应温度。

  张岩提出了对煤进行适度气化的新思路,通过过程优化和系统集成,实现气固兼用,构建以生产低中热值煤气联合循环发电或化学品合成为主干,联产高附加值活性炭产品的煤电化工及环境材料生产一体化的新型煤气化联产系统模型。

  经实验测算,预计煤气化效率将低于传统煤气化技术1-3个百分点,煤气热值在1000-2000kcal/Nm3,基于250MW联合循环发电系统估算,活性炭生产规模将大于3万吨/年,生产成本预计低于500元/吨。此外,该技术环境效益显著,可实现活性炭生产过程的近零排放;同时活性炭成本降低,将间接降低水体净化的环保治理成本。然而,该技术目前尚处于实验室阶段,只能用来生产低中档产品,且煤种适应性较窄。

  活性炭是环保的有效产品,但其生产本身又是高能耗、高污染的过程。联产法活性炭没有这些缺陷,同时对部分类型污水(如腐殖酸废水)的净化效果优于传统方法。

  近年来,活性炭的应用领域不断扩大,不仅在石油、化工、冶金、食品等行业中应用广泛,而且在环境保护、控制污染等方面也发挥着越来越重要的作用。

  高效清洁利用新方法让火焰在超临界水中闪耀

  西安交通大学能源与动力工程学院教授王树众认为,对煤的高效清洁利用并非没有办法,现有技术完全可以实现,只是成本太高。他举例说,就现有技术而言,要控制二氧化碳排放,就会使电厂发电效率下降10%,经济性很差;而要实现脱硫脱硝,一年就要花费900亿~1000亿元。“有没有一种技术,不采用复杂的末端控制,而在煤的转化利用过程本身就不生成硫氧化物、氮氧化物和飞灰,同时能够控制二氧化碳排放呢?”他提出了这样的问题。

  超临界水可能成为解决这一问题的“钥匙”。

  当气压和温度达到临界点(22.05MPa,374.3℃)时,因高温而膨胀的水和因高压而被压缩的水蒸气会形成一种特殊形态——超临界水(SCW)。此时水的液态和气态没有区别,完全交融在一起,成为一种新的呈现高压高温状态的液体。据王树众介绍,超临界水的密度、黏度、离子积和介电常数均明显下降;其扩散系数较高,约是常温常压下水的100倍,传质性能好;与非极性气体和烃类物质安全互溶,而对无机盐几乎不溶解。

  王树众说,目前电厂中应用的超临界机组和超超临界机组均利用了超临界水的这一特点,但并没有利用好超临界水的其他特有性质。他研究的煤的超临界水气化耦合水热燃烧的发电系统恰恰利用了这些特点。

  “超临界水气化、超临界水氧化、超临界水热燃烧这是三个需